
International Journal of Scientific & Engineering Research Volume 11, Issue 3, March-2020 870

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

Enhancing Software Deployment Release Time
Using DevOps Pipelines

Zeinab Shoieb, Laila Abdel-Hamid, Manal A. Abdel-Fattah

Abstract— DevOps is a software development method that focuses on communication, integration, and collaboration among IT

professionals to enables the rapid deployment of products. DevOps is a culture that promotes collaboration between Development and

Operations teams. This allows deploying code to production faster and in an automated way. It helps to increases an organization's speed

to deliver applications and services. It can be defined as an alignment of development and IT operation. In previous work, we have found

that there is a high degree of divergence in how continuous integration, specifically, is interpreted and implemented. This confusion is not

limited to continuous integration but is arguably even more pronounced in the case of continuous delivery (CDE) and continuous

deployment terms which are often used interchangeably. Although challenges and solutions for CDE adoption have been discussed in the

literature, little work is particularly focused on implementing CDE. Furthermore, existing reviews could not find highly relevant scientific

literature on CDE implementation.

Index Terms— Continuous Delivery, Continuous Deployment, Continuous Integration, Continuous Release, DevOps and Pipelines.

—————————— ——————————

1 INTRODUCTION

arket needs are changing continuously and always re-
quired providing products faster to market due to com-
petition among software companies which puts an in-

creasing pressure to deliver new features extremely fast. Elim-
inating waste is the first principle that explains the Waste as
any unnecessary activities that add cost or time without add-
ing value to the customers (partially completed work, extra
Features, extra processes, task switching, Handoffs, delays
and defects). DevOps appeared as a result of integration of
development and operators team members to close the gap
between developers and operators [2] and to increase speed of
new software releases and reduce time to respond to customer
needs and changes. These teams have a different goal, devel-
opment teams are interested for deliver new features and op-
erations teams are interested for stability [17].
Continuous Integration (CI) is a software development prac-
tice where members of a team integrate their work frequently,
usually each person integrates at least daily - leading to multi-
ple integrations per day. Each integration is verified by an
automated build (including test) to detect integration errors as
quickly as possible [14]. It aims to continuously integrate
source code to the main branch [10], the developer to commit
the code several times in a day followed by automatic build
and test and immediate feedback to the developer whenever
any bug is encountered. If no bug is encountered, the commit-
ted code is pushed to the production [3]. Continuous Integra-
tion is essential to be able to establish a Continuous Delivery

Continuous Deployment (CD) it means whenever a feature is
ready for delivery, it can be released immediately – given that
a suitable development and deployment infrastructure is in
place [2]. It is an operations practice where release candidates
evaluated in continuous delivery are frequently and rapidly
placed in a production environment, the nature of which may
differ depending on technological context. This often, but not
necessarily, implies making it generally available to users,
while in other contexts it is not even applicable as a concept
[1].The Continuous Deployment pipeline is the set of tools,
which enables the workflow to deliver source code from the
version control system through the build system and the tests
to production in a continuous matter. The code shall be ready
for being deployed to target after passing through the Contin-
uous Deployment pipeline, the first step in the Continuous
Deployment pipeline is Continuous Integration. The purpose
of Continuous Deployment is to achieve the ability to be able
to deploy code to the customers as soon as new code has been
produced [10]. Continuous deployment typically deploys the
new build into production after successful continuous integra-
tion pass, but the deployment can also consist of automated
tasks as deploying virtual machines, and installing and con-
figuring operating system, supporting software, and libraries.
Continuous deployment can automatically scale up and down
the deployment on cloud computing platforms depending on
the demand [2]. As 29% believed that continuous deployment
would help with infrequent releases [18].
Continuous integration and continuous deployment are con-
sidered key parts of DevOps. Continuous integration process
typically includes automated build, unit tests, and integration
tests for modified source code that is automatically pulled
from a revision control system [2].

Continuous Delivery (CDE) is a software engineering ap-
proach in which teams keep producing valuable software in
short cycles and ensure that the software can be reliably re-
leased at any time [12] [14]. The CDE workflow aims to assure
that the software is deployable throughout its lifecycle and

M

————————————————

 Author name is currently pursuing masters degree program in electric
power engineering in University, Country, PH-01123456789. E-mail: au-
thor_name@mail.com

 Co-Author name is currently pursuing masters degree program in electric
power engineering in University, Country, PH-01123456789. E-mail: au-
thor_name@mail.com
(This information is optional; change it according to your need.)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 3, March-2020 871

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

that the team prioritizes keeping the software deployable over
working on new features [14]. By another word it aims to set-
up an environment where developers can commit code to the
master branch whenever he or she have completed a task. If
there is something wrong with the code the automated tests
will fail and the commit will need to be fixed before replacing
the latest version of the software which contains a value for
the customer [10]. Its scope varies from case to case, and is
defined by whatever one needs to do to confidently release
and/or deploy the software. This typically involves activities
such as code analysis, documentation generation, acceptance
testing, regulatory compliance assessments, license scanning
and requirement verification [1]. Implementing CDE is chal-
lenging [12].
Continuous Delivery (CDE), Continuous Deployment (CD) is
a key practice for making software development process relia-
ble and faster. The feedbacks from the Production and Opera-
tions team are made available to the developer at frequent
stages facilitating improvement and automation. CDE is not a
fully automated process. It simply means that the application
is potentially capable of being deployed [3]. Continuous De-
livery according to software-oriented organizations is when
you are able to deliver to the repository when ready, while
Continuous Deployment is when you are able to deploy to the
target when ready [10].

DevOps is a blend of two terms development and operations,
it is considered to be the most effective way to foster collabo-
ration and eliminate the walls of confusion that exist between
software developers and operations teams [4]. It is develop-
ment processes that reduce repetitive tasks in development,
quality assurance, and deployment with help of automation
tools and work-flows. It improves speed of the delivery, and
collection of the user feedback through continuous operation
also it reduces development costs, setup time, and failure re-
covery time through automation [2]. Besides that, it brings
new challenges since developers need to be aware of the de-
ployment settings and application runtime characteristics. At
the operational stage, several uncertainties, e.g., workload
fluctuations and resource availability, may affect the perfor-
mance analysis [11]. DevOps is all about culture, automation,
measurement and sharing (CAMS). It is gaining popularity
because of its continuous approach [3]. DevOps is considered
as much more of a process, there is not a single tool that helps
in deploying DevOps practice in an organization. It is more of
a ‘toolchain’ [5].
As both DevOps and continuous deployment aim at constant-
ly delivering added value to end users, automation is needed
to reduce repetitive work [2]. The problems faced before Au-
tomatic and continuous integration includes Developer has to
wait too long for the test results, and thus wasting a lot of time
that could have been well spent in innovation and developing
new product, Developer need to go through the entire source
code to fix any bug encountered, No continuous feedback
from the production or test team at every stage, and Manual
configuration can lead to inconsistency, importability and re-
duced speed of recovery from failure [3][13] it can be handled

automatically and the pool of resources can be released im-
mediately after the task is completed [18]. With automated
deployments, the risks and downsides of manual deployments
can be alleviated, as there is an easy, repeatable and reliable
process that maintains documentation of the infrastructure
and dependencies in itself [13].
There are five main factors hindering the adoption of DevOps
are identified as lack of strategic direction from senior man-
agement, lack of education around DevOps, risk of disinter-
mediation of roles, resistance to change, and silo mentality [4].

The goals of DevOps are to form enhancements across all
parts in the product and repair delivery they embody im-
proved deployment frequency, quicker time to market, Lower
failure rates of new releases, faster recovery time from crashes
or failures, and the increased ability to build the right product
by fast experimentation [5]. According to 2017 State of
DevOps Report, around 24.5% of organizations surveyed re-
sisted automatic deployment due to manually driven rollback
mechanism [3].

Continuous Release is a business practice where release can-
didates evaluated in continuous delivery are frequently and
rapidly made generally available to users/customers [1].
Release management is process liable for planning, schedul-
ing, controlling the build, testing and deploying release to in-
crease numbers of successful releases through avoid unex-
pected outcomes [17]. This process encompasses code change
integration, continuous integration, build system specifica-
tions, infrastructure-as-code, deployment and release [14].
Release and deployment management goal is to deploy releas-
es into operation and establish effective use of the service so as
to deliver value to the client. They additionally ensure hando-
ver to service operations takes place which appropriate coach-
ing and documentation exists to confirm ongoing support of
the new service. Its scope includes the processes, systems and
functions to package, build, test and deploy a release into op-
eration [6]. This means that after a developer commits code to
the version control system, it’s automatically subjected to a
variety of tests and, assuming the tests are passed, placed into
production. Modern systems can be deployed multiple times a
day [7]. The effective and efficient use of test and staging (pre-
production) environments is critical to a successful release
deployment [8].
According to 2017 State of DevOps Report, the high-
performance companies like Amazon and Netflix deploy
thousands of times per day [3].

2 RESEARCH PROBLEM

The downtime of the Application is expensive, so most enter-
prises strive to minimize or, better yet, eliminate it. Reducing
downtime when you need to roll out software patches or new
features is a technical challenge [9]. The business impact of not
being able to bring people, processes, and systems along
across development and operations groups is obvious once
applications that are the mainstay of a business falter due to

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 3, March-2020 872

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

failed deployments and releases. So how does one improve
the quality and increase the speed of releases and deploy-
ments without compromising environmental stability and
control? And how does one streamline processes that span
your development and operations teams? Improving and
changing the way you release and deploy application software
is considered to be a big challenge [8]. As the more frequently
you release software, the more reliable your release process
becomes, as teams have a greater incentive to fix problems and
improve the process [9].
Software is not getting deployed into test environments or
released into production Environments any more quickly.
Lack of control over the release process, poor collaboration
between teams, and manual deployments are all leading to
poor quality releases at a high cost to the business. With less
than perfect handoffs between development and operations
teams, it is not surprising that recent research indicates that
through 2016, a lack of effective release management will con-
tribute up to eightieth of production incidents in giant organi-
zations with complicated IT services. Process disconnects be-
tween development and operations teams can seriously im-
pact an organization’s ability to generate revenue [8].

 The amount of required effort to move information and re-
lease artifacts from one process to another, or from one team
to another, in support of a release is considerable and is a ma-
jor bottleneck in the flow of the release. Any ambiguities re-
quire additional communication between teams to resolve and
can result in significant delays, high costs, and failed releases
[8]. Also, the pre-release work that isn’t automated slows
down delivery and makes it hard to roll out new features [9].
We can avoid time-consuming manual work while reducing
release risks by following DevOps principles to automate the
release and deployment process. Using advanced deployment
patterns can help to speed up the software delivery cycle
while maintaining control over the way your applications are
deployed [9]. As the ‘infrequent releases’ and ‘time consuming
to test’ were rather common as 36% and 28% of the respond-
ents [18].

3 LITERATURE REVIEW

Kati Kuusinen et al 2018, presents what challenges can a large
company face when transitioning towards continuous devel-
opment and DevOps and how to overcome those challenges,
the survey’s result was ‘infrequent releases’ and ‘time con-
suming to test’ were rather common as 36% and 28% [18].
Teemu Laukkarinen et al 2018, discusses the fit of DevOps for
regulated medical device software development. They exam-
ine two related standards, IEC 62304 and IEC 82304-1, for ob-
stacles and benefits of using DevOps for medical device soft-
ware development. They found these standards to set obsta-
cles for continuous delivery and integration [2].
Aayush Agarwal et al 2018, provides various methodologies
and tools that can constitute an effective CD/CI pipeline [3].
Mojtaba Shahin et al 2017, investigating and classifying the
factors that may impact on adopting and implementing CD
practice [16].
Daniel Stahl et al 2017, highlights a critical problem in the

software engineering community by assessing the state of un-
derstanding and level of consensus regarding the meaning of
continuous practices and DevOps in contemporary literature.it
proposes recommendations to improve the level of conceptual
clarity in published literature and a set of definitions which
offer a way forward to disentangle DevOps and continuous
practices from one another [1].
Ahmed Bahaa Farid et al 2017, explained how using practices
of DevOps to enhance Lean Software Development that allows
to cover the entire life-cycle from development to operations
environments. Create a new lean and DevOps framework that
used to enhance process of Lean through reduce time to mar-
ket and increases the rate of software delivery [17].
Morgan B. Kamuto and Josef J. Langerman 2017, the contribu-
tion primary to this research is the definition of the main fac-
tors that are hindering the adoption of DevOps and a pro-
posed conceptual framework or strategy that can be used to
adopt it in large organizations [4].

3.1 Literature review analysis

The maintenance operation of continuous changes is the most
effort and cost expensive stage in the SDLC. DevOps has im-
portant features that are continuous integration, continuous
delivery, automation and high efficiency to increase enterprise
market competition [15].
Software companies are increasingly adopting DevOps and
continuous software engineering practices to support short
feedback loops, gain better control and visibility over deploy-
ments, and decrease the need for manual work with the help
of automated processes [18].
DevOps is set of practices and principles that is trying to im-
prove life-cycle as a whole through integration between de-
velopment and operations teams to reduce the release cycles
and increase number of software deliveries [17].it relies on
automated deployment pipeline that consists of continuous
integration (CI), test automation, and release automation. The
benefits of the automated pipeline include minimizing manual
repetitive work and being able to release whenever working
software has been developed which again leads to getting rap-
id user and customer feedback, i.e. learning fast [18]. And er-
rors can be detected at the time they occur or even there are
notifications of an error, this led to reduce the number of days
to resolve the errors [17]. These benefits will eventually in-
crease the customer satisfaction, as the customer has a larger
and more immediate impact on the product [18].
In a Continuous Integration process, the aim is not to have
release ready code, the aim is to integrate often to avoid inte-
gration problems, Continuous Deployment aims to deploy the
build to a target and Continuous Delivery aims to deliver
working software continuously. It doesn't need to include the
deployment of software, but it should be ready for a deploy-
ment at any given time [10].

Research majority thought that moving towards Continuous
Delivery have a positive effect on the development time, also
it has positive effects of the quality of the products and that
the costs, over time, decreases.
There is an agreement that the short-term costs were high, but

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 3, March-2020 873

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

the long-term costs were lower. Higher quality of the product,
increasing the efficiency of the work and the possibility to re-
ceive and respond quickly to feedback is the greatest benefit of
a Continuous Delivery implementation. And that Continuous
Delivery is good for their relations with the customers [10].
The deployment pipeline is a staging process, where a set of
activities are performed at each step, and evaluated. Allowed
to proceed to the next stage. Feedback from each stage is
communicated to the developer. This way tracking down a
problem is made easier as knowledge about which stage failed
is readily available. The purpose of the deployment pipeline
is threefold: add visibility, provide feedback and continually
deploy [14]. Also, to set up this pipeline was considered to be
a great challenge, configuration and setup of the tools are con-
sidered to be hard to get working [10].
It can be concluded that automating deployment process also
saves developers working time on top of other benefits. The
time that was previously spent on preparing for deployments
and performing them has been directly transferred into devel-
opment, testing and support for the end users, enhancing the
productivity of the team [13].In general, we can formulate the
following statement “small release, small risk" [10].

4 PROPOSED TECHNIQUE

 Manual releases have been identified as one of the common
design problems in software development. Some sources have
established that manual deployments are sometimes suitable
when the service to be deployed is very simple and is de-
ployed to only few nodes in one or two environments [13].
As it has been previously established from literature review,
adopting continuous integration increases the project predict-
ability, developer productivity and communication between
teams, this research will present an example of a practical
technical improvement to decrease the manual workload of
developers and improve the release process using DevOps
pipelines by using the following proposed model

At a high level, the pipeline includes compiling, Packaging
and running tasks. The first step including preparing the envi-
ronment to install the agent used to run the pipelines. Second,
we will create two pipelines one for builds, and the other for
Release also setup configurations and other services. Each
pipeline will contain multiple tasks such as (Get Sources, Nu-
Get Restore, Build Solution and Publish Artifact that for build

pipeline and Copy artifacts to target server, Deploy IIS App,
Copy environment configuration and Oracle Communicator
Wrapper that for release pipeline). Third, Running the Pipe-
lines to build the pushed code. Fourth, deploy the succeeded
build to the staging server. Finally, we will measure Build
speed and Deployment speed, Deployment success rate, and
Deployment frequency.

5 CONCLUSION

As explained above in this paper that DevOps enhances the
Software Deployment life cycle, enhancing of build and re-
lease process are done through identifying the causes of the
traditional software deployment wastes and how using
DevOps practices in improving and addressing these wastes.
The role of DevOps in the addressing or improvement of these
wastes reducing time to market and increases the rate of soft-
ware delivery that leads to lower levels of deployment pains
and lower change fail rates.

REFERENCES

[1] Daniel Stahl, Torvald Martensson and Jan Bosch, Continuous Prac-

tices and DevOps: Beyond the Buzz, What Does It All Mean? 978-1-

5386-2141-7/17 $31.00, IEEE DOI 10.1109/SEAA.2017.78,2017.

[2] Teemu Laukkarinen, Kati Kuusinen and Tommi Mikkonen (2017

IEEE/ACM), DevOps in Regulated Software Development: Case

Medical Devices, 978-1-5386-2675-7/17 $31.00 © 2017 IEEE, DOI

10.1109/ICSE-NIER.2017.20

[3] Aayush Agarwal, Subhash Gupta, Tanupriya Choudhury (ICACCE-

2018), Continuous and Integrated Software Development using

DevOps, 978-1-5386-4485-0/18/$31.00 ©2018 IEEE

[4] Morgan B. Kamuto and Josef J. Langerman (2017 2nd, IEEE), Factors

Inhibiting the Adoption of DevOps in Large Organizations: South

African Context, International Conference on Recent Trends in Elec-

tronics Information & Communication Technology, May 19-20, 2017,

and India,978-1-5090-3704-9/17/$31.00 © 2017 IEEE

[5] Riverstone LLC

[6] Ucisaitil: A guide to release and deployment management

[7] Len Bass, The Software Architect and DevOps, 0740-7459/18/$33.00,

IEEE Software, January/February 2018.

[8] Mark Levy, Best Practices in Release and Deployment Management,

162-000088-001/S/08/16/2016 Micro Focu, 2016.

[9] XebiaLabs Enterprise DevOps.

[10] Rickard Bremer and Johan Eriksson, Understandings and Implemen-

tations of Continuous Delivery, June 2015.

[11] Catia Trubiani, Weiyi Shang et al, Performance Issues? Hey DevOps,

Mind the Uncertainty! , IEEE Software, October 2018, DOI:

10.1109/MS.2018.2875989.

[12] Lianping Chen, Continuous Delivery at Scale: Challenges and Op-

portunities, ACM ISBN 978-1-4503-5745-6/18/05.2018 ACM/IEEE

4th International Workshop on Rapid Continuous Software Engi-

neering.

[13] Antti Paloposki, Enabling Continuous Integration through deploy-

ment automation, Case Study: Property transaction system of Finnish

National Land Survey, Aalto University School of Electrical Engi-

neering, January 17, 2018.

[14] Kim Rejstrom, Implementing Continuous Integration in a Small

Company, Aalto University School of Electrical Engineering, 2016.

Fig. 1. Proposed model.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 3, March-2020 874

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

[15] Sen-Tarng Lai and Fang-Yie Leu, A Micro Services Quality Meas-

urement Model for Improving the Efficiency and Quality of DevOps,

Springer International Publishing AG, part of Springer Nature 2019,

L. Barolli et al. (Eds.): IMIS 2018, AISC 773, pp. 565–575, 2019.

[16] Mojtaba Shahin, Muhammad Ali Babar, Mansooreh Zahedi, Liming

Zhu, Beyond Continuous Delivery: An Empirical Investigation of

Continuous Deployment Challenges, ACM/IEEE International Sym-

posium on Empirical Software Engineering and Measurement, 2017.

[17] Ahmed Bahaa Farid, Yehia Mostafa Helmy and Mahmoud Mohamed

Bahloul, Enhancing Lean Software Development by using DevOps

Practices. (IJACSA) International Journal of Advanced Computer Sci-

ence and Applications, Vol. 8, No.7, 2017.

[18] Kati Kuusinen, Veena Balakumar, Sune Chung Jepsen, Simon

Hjortshøj Larsen,Thomas August Lemqvist, Admir Muric, Anna Øl-

gaar Nielsen, and Oliver Vestergaard, A Large Agile Organization on

its Journey towards DevOps, 44th Euromicro Conference on Software

Engineering and Advanced Applications. 978-1-5386-7383-

6/18/$31.00, IEEE DOI 10.1109/SEAA.2018.00019

IJSER

http://www.ijser.org/

